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Abstract

For this project I developed a procedural fur system, with the aim
of exploring the feasibility of offloading computation onto the GPU
within artist tools. The final artefact is an application which serves
to interface with the fur system API which I have developed. This
report primarily documents the implementation of the API, as well
as my findings.

1 Introduction

Generating and rendering hair and fur content for use in visual ef-
fects and games is typically a very computationally heavy task, due
to the inherent complexity of handling thousands if not millions of
geometric strands. Fortunately, modern hardware provides flexibil-
ity in regards to accelerating such tasks, which we are able to lever-
age though the use of hardware acceleration APIs such as OpenCL
and CUDA.

1.1 Related work

Whilst many larger companies opt to develop their own software for
handling fur, such as MPC’s Furtility [Fagnou and Leaning 2010],
there are a number of commercially available solutions that are also
widely used in production.

The most popular of these is XGen [Thompson et al. 2003], origi-
nally developed by Walt Disney Animation Studios, which has been
included in Autodesk’s Maya since 2014. XGen uses a ’Collection’
and ’Description’ paradigm; Descriptions store user controlled pa-
rameters which affect fur primitives (curves for example) on a se-
lect area of a mesh, and Collections act as a container for these
Descriptions. There are two primary methods offered for distribut-
ing primitives on a mesh, Guide Curves can be used to manually
control the placement and shape of primitives by placing ’Guides’
on the mesh surface, whereas ’Groomable Splines’ randomly dis-
tributes splines over the mesh surface which can be manipulated in
real time using viewport manipulators that mimic the brushing and
styling of fur. In both modes, ’modifiers’ can be added to the modi-
fier stack to further adjust the visual outcome, adding features such
as clumping, noise, and coiling. Attributes within these modifiers
can be further controlled using expressions or texture maps.

Another commercially available solution is Yeti [Peregrine*labs
2012], which is also offered as a plugin within Autodesk’s Maya.
Yeti offers a more procedural approach, giving the user a node
graph interface in which to construct the desired look from indi-
vidual components. For example, the most simple usage requires
the user to first create a ’scatter’ node to distribute points on the
mesh surface, and then combine it with a ’grow’ node to extrude
curves from these points. Whilst at first this may seem unintuitive
when compared to XGen, it offers greater flexibility and avoids the
pitfalls associated with a destructive workflow.

Offering even more flexibility, recent versions of SideFX’s Houdini
include hair and fur operator nodes, which create predefined node
networks for the generation of hair and fur. These networks use
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standard Houdini nodes internally, so experienced Houdini users
are intuitively able to create the visual outcome they desire, using
tools they already know. However, it may be quite unintuitive for
asset artists (those who would be using the tool, Groom artists?),
who are not used to Houdini’s heavily procedural workflow.

1.2 GPU acceleration

Whilst it is not clear to what extent each of these solutions make use
of GPU acceleration, they all perform fast enough to allow the user
to manipulate them interactively. However, software such as the
HairWorks [NVIDIA 2014] API and TressFX [AMD 2014] library
are developed primarily for use in games, so they are designed to
utilise the GPU as much as possible. These solutions are able to
perform both simulation and rendering of hair in real-time, provid-
ing interactivity that exceeds that of comparable software designed
for VFX usage. It is worth noting that these tools do not provide a
method for authoring hair and fur content, but instead designed to
use load content generated by 3rd party authoring tools.

Figure 1: NVIDIA’s HairWorks API is used in a handful of modern
games, such as The Witcher 3 [CD Projekt RED 2015], to provide
realistic and interactive hair rendering.

2 Implementation

From my research it was clear that there is an apparent lack of stan-
dalone software for authoring fur; it makes sense that existing fur
software are developed as software plugins, as this allows the tool
to make use of the host digital content creation (DCC) package’s
existing functionality.

However, by developing the system as a simple API one could make
it DCC agnostic, which is why I chose to develop my system as a
pairing of a simple API with a standalone tool which interfaces with
it. By developing a simple API it could allow for a future imple-
mentation as a plugin within a DCC, providing the data exchange
formats are compatible with the host.

2.1 Resources

I decided to develop the API side of the fur system using C++, pri-
marily as it most commonly used when developing computation-



ally heavy artist tools, but also because it is the language I am most
comfortable using. I opted to use OpenGL over other APIs (CUDA,
OpenCL) for offloading of computation onto the GPU, simply be-
cause my final artefact is a tool with a graphical interface, and
OpenGL is capable of handling both arbitrary computation using
compute shaders and rendering of geometry simultaneously.

To handle the user interface I used the Qt framework within C++.
Qt is commonly used for artist tools within visual effects as it is
cross-platform, and applications can be configured to run within
other applications that make use of it, such as Autodesk’s Maya.

I wanted to include a node-graph style interface within my ap-
plication, as these are commonly used within existing artist tools
(Autodesk Maya, Unreal Engine), and would encourage modularity
within my API. Qt does not natively provide this kind of interface,
so I made use of NodeEditor [Pinaev 2017], an existing Qt-based
library that provides this functionality.

2.2 Design

From looking at existing fur systems I was able determine that my
simplified fur system would need to consist of the following com-
ponents:

• Geometry Loaders - These are responsible for loading user
specified geometry. Example Geometry Loaders could allow
for the parsing of Wavefront OBJ files.

• Distributors - These are responsible for the distribution of
curves onto user specified geometry. User controllable param-
eters could include density (curve count), distribution pattern
(random, uniform), and curve length. These parameters could
potentially be controlled by texture inputs.

• Operators - These are responsible for manipulation of the
curves to achieve the desired look. Example operators could
provide bending, clumping, or randomisation of input curves.
These should behave much like the ’Modifiers’ in XGen.

• Renderers - These are responsible for the rendering of curves
into the application viewport. Example renderers could pro-
vide mesh, curves as lines, or curves as ribbons rendering
functionality. User controllable parameters could provide
controls for the shading model in use, as well as control of
the base and tip widths when rendering curve ribbons for ex-
ample.

Whilst the list of components specified above provide the required
functionality for a standalone tool, they do not provide any func-
tionality for exporting fur for use in a broader pipeline. I chose
to omit this functionality to limit the scope of this assignment, but
the ability to export hair curves as alembic would be desirable, as
alembic is a widely adopted format that allows for the storage of
multiple different types of curve geometry.

2.3 Development

In this section I will explain the development of each of the major
components, not necessarily in chronological order, but in order
regarding to how their data is passed through the system.

2.3.1 Mesh loading

The first problem I tackled was that of loading mesh geometry into
the system, in such a way that would allow for later computation
on both the GPU and CPU. I opted to implement a Wavefront OBJ
loader as they are (deceptively) simple to parse, consisting of a list
of vertex positions, vertex normals, vertex texture coordinates, and

faces as defined by a list of indices. This data structure formed
the basis of my ’Mesh’ class. Using the NodeEditor library I then
created a node which loads OBJ files, and outputs the ’Mesh’ object
through it’s output data port.

2.3.2 Curve distributors

In order to generate curves for the system to manipulate, it was
necessary to create a node that handles the distribution of curves
onto the surface of a mesh. This node needs to take ’Mesh’ object
data as input, and output ’Curves’ object data. A ’Curves’ object
was implemented which consists an array of ’Curve’ objects, which
in turn consist of an array 5 vertex positions that construct the curve.
Distributor nodes would also need to alternate between performing
the distribution process on the CPU or on the GPU, which would in
turn affect whether the node outputs a ’Curves’ object, or an ID for
where the curves data is stored on the GPU.

With these parameters in mind I decided to implement an abstract
distributor node class, which contains a virtual function for per-
forming the distribution, and handles the callbacks for when in-
put data is changed and the distribution needs to be updated. This
makes the system somewhat extensible, allowing for different dis-
tribution patterns to be implemented with ease. The node’s data
type was also extended to be able to store either ’Curves’ objects
from the CPU, or an ID for an OpenGL buffer object, with an enu-
merated value to identify which of these is currently in use. This
not only allows the distributor to alternate between CPU and GPU
computation arbitrarily, but also allows nodes receiving this data to
process it accordingly.

There are many different methods one could use to distribute points
on an arbitrary mesh, however for replicating creature fur it is de-
sirable to choose a method that distributes primitives at random po-
sitions across the surface, yet roughly evenly spaced from neigh-
bouring primitives. A popular method used to achieve this kind
of distribution is referred to as ’Dart Throwing’, which relies on
checking the distance to neighbouring samples after a new sample
has been generated, and discarding the sample if the samples are too
close. Whilst these kinds of methods produce good results, they can
be inefficient as in certain situations many samples may be gener-
ated and rejected, before a sample is accepted. An optimisation for
this is described in Dart Throwing on Surfaces [Cline et al. 2009],
which relies on removing areas of the mesh that are already covered
by a sample, by means of triangle subdivision.

Unfortunately, parallelising dart throwing methods is not trivial,
making them unsuitable for my desired usage of OpenGL com-
pute shaders. Whilst sampling methods suitable for parallel pro-
cessing do exist, such as those described in Parallel Poisson Disk
Sampling with Spectrum Analysis on Surfaces [Bowers et al. 2010],
I instead opted to implement a naive random sampling method as it
was much easier to parallelize.

2.3.3 Compute shaders

In order to get this distribution process running on the GPU, I
needed to allocate and store data for both the Mesh and Curves
in OpenGL buffers, for later use in a compute shader. The
most common way of storing OBJ data in OpenGL buffers,
as described in [Wikibooks Community 2011], is to use a
GL_ARRAY_BUFFER object to store the vertex data and a
GL_ELEMENT_ARRAY_BUFFER to store the indices of the
GL_ARRAY_BUFFER that make up each face. However for ease
of use in compute shaders I decided instead to store each face in
a GL_SHADER_STORAGE_BUFFER, where each face consists of
three sets of positions, normals, and texture coordinates. Whilst



Figure 2: Example distribution generated by my naive random dis-
tributor, note how the distribution stays relatively uniform despite
variance in mesh density.

this is less efficient, I found that the overhead in GPU memory us-
age was negligible, and that this method allowed for much simpler
usage in a compute shader. Allocating a buffer for the Curves data
was much simpler as it consisted of an array of ’Curve’ structs, each
consisting of 5 vertices. Listing 1 shows how these buffers were ac-
cessed from within the compute shaders; note how all of the vec3
values have been padded to vec4, as the std430 layout qualifier
requires an alignment of 16 bytes.

2.3.4 Curve operators

Once curve primitives have been generated, they need to be passed
onto curve operators, which perform most of the work towards cre-
ating an appealing visual output. I decided to create an abstract
curve operator node, much like I had with the distributor node,
which contains a virtual function for performing the curve manip-
ulation. This allows for multiple different curve operators to be
integrated into the system with ease, however for the scope of this
assignment I chose only to implement curve operators to provide
bending and clumping functionality.

2.3.5 Rendering

By default, ’Mesh’ and ’Curves’ objects present in the node graph
are not rendered in the viewport. For example, the user may want
to distribute curves from hidden ’scalp’ geometry, or use a set of
hidden curves as clumping attractors. Therefore it was necessary
to implement a pair of rendering nodes that would take a ’Mesh’
or ’Curves’ object as an input, and provide shading controls for
rendering them in the viewport.

Whilst rendering and shading triangulated meshes is relatively
straightforward, as described in [Wikibooks Community 2011],
there are multiple different approaches one could use to render
curves. The technique I chose to implement relies on drawing an
empty VAO multiple times, and using gl PrimitiveIDIn from
within a geometry shader to determine which curve from the bound
GL SHADER STORAGE BUFFER should be drawn. Listings 2 and
3 shows how this was achieved. The use geometry shaders also al-
lowed me to alternate between drawing the curves using line prim-
itives, or to draw the curves as forward facing triangle strips.

For shading of the meshes I opted to implement a physically based
shading model, as described in [Vries 2016], however some alter-
ations were necessary as my method of rendering curves does not
provide usable surface normal information. Instead the normalized
direction in which the curve is leading, from one vertex to the next,
was substituted as the surface normal. Then, all of the dot prod-
uct terms in the shading calculations which use the surface nor-
mal, were inversed. The result roughly approximates the shading
qualities of thin cylinders by assuming that all vectors that are per-

pendicular to the direction of the curve are valid surface normals.
Whilst this technique provides visually pleasing results, it is inac-
curate and does not account for properties such as self-shadowing,
or light scattering.

2.4 User testing

Near the end of the development I was able to convince friend and
fellow student Alin Bolcas to test the system and provide feedback
from an artist’s point of view; Alin is an experienced modelling
and look development artist who uses a variety of different software
packages to create his work, so getting his feedback on the usability
of my tool proved extremely useful.

His first comments were in regards to how the node graph handles
rendering of meshes and curves; he found it quite unintuitive to
manually create rendering nodes for each new curves object that
needed to be drawn. He suggested that a node for the combination
of curves should be added, which would consolidate multiple curve
objects into a single output for simplified rendering.

He noted that the lack of a node that applies noise to curves proved
problematic during his testing; this kind of node is fundamen-
tal to achieving appealing fur visuals. He liked the behaviour of
the clumping node, as this functionality is also very common and
highly used within fur systems, though visual quality was somewhat
compromised as my current implementation does not preserve the
initial curve length. Adding a control in the distributor that would
allow for the variation of curve length was also suggested as some-
thing that would improve the quality of the visual output.

His final comments were in regards to the user interface, suggesting
that I make controls similar to their counterparts in existing soft-
ware wherever possible. Changing the camera controls to match
those in Maya was suggested as it would provide a familiar user
experience when manipulating the viewport. The ability to create
new nodes by pressing the tab key as opposed to right click was
also suggested, as this is the standard in node editors, such as those
in Maya and Nuke.

3 Results

After I had implemented some of the features Alin requested, I de-
cided that the system was in a satisfactory state for the purposes of
this assignment. The following Figures 3 and 4 show examples of
the kind of visual output my system is capable of producing, and
the accompanying node graph setup used to create them.

Figure 3: Examples of visual output that my system is capable of
producing.



Figure 4: The accompanying node graph setup used to create the
images in Figure 3.

3.1 Performance

Figures 5 and 6 show that my system is performant enough to pro-
vide real-time feedback, even when dense meshes and high primi-
tive counts are used. Whilst Figure 5 shows performance gains by
utilising the GPU over the CPU, note that my CPU implementation
is single-threaded, and further performance gains could be made by
utilising multithreading.

It is worth noting that my system is quite inefficient in regards to
GPU memory consumption; The node graph setup in Figure 4 uses
322 MiB of VRAM. This is a result of storing the state of each
GL SHADER STORAGE BUFFER in GPU memory, for each of the
curve operators used. Whilst this avoids the need for a full graph
evaluation each time a parameter is changed, it effectively doubles
VRAM usage each time a curve operator is added.

Mesh Triangle Count Primitive Count CPU (ms) GPU (ms)
16 (Triangle Strip) 10,000 2 - 5 1 - 2

- 100,000 18 - 41 8 - 24
- 1,000,000 120 - 150 77 - 110

4968 (Stanford Bunny) 10,000 173 - 211 1 - 2
- 100,000 1718 - 1756 12 - 30
- 1,000,000 17218 - 17259 82 - 112

Figure 5: Performance metrics comparing time taken to distribute
varying numbers of primitives, on meshes of varying densities, us-
ing the CPU and GPU. An Intel Core i7-6700 CPU and an NVIDIA
GTX1080 GPU were used for testing.

Mesh Triangle Count Evaluation Time (ms)
16 (Triangle Strip) 69 - 84

4968 (Stanford Bunny) 81 - 112
14067 (Utah Teapot) 138 - 228

Figure 6: Performance metrics showing the time taken to perform
a full graph evaluation on a complex setup, as seen in Figure 4, for
meshes of varying triangle counts. Note that over 500,000 primi-
tives are being processed in this setup.

4 Conclusion

Overall I am pleased with the visual quality and interactivity of
my system; currently it provides the basic functionality required to
visualise simple hair and fur content, whether it be for a VFX or
real-time usage scenario. However, I believe further work is nec-
essary in order to maximise it’s performance and usability within a
broader production pipeline.

4.1 Future Work

Unfortunately my system lacks the ability to export curves data,
making it virtually unusable within a production pipeline in its cur-
rent state. A viable file format for this could be Alembic [Sony Pic-
tures Imageworks and Industrial Light and Magic 2011], as it na-
tively supports the storage of parametric curves. Integrating alem-
bic support into my system could also allow for animated mesh
geometry to be used. Another candidate file format would be Ren-
derMan’s RIB format, which would allow for direct rendering of
the hair curves in any RenderMan compliant renderer.

Another desirable addition to my system would be viewport manip-
ulators, similar to the ’Groomable Splines’ feature in XGen. This
could allow me to implement techniques such as those described
in Skippy [Krs et al. 2017], which would provide my system with
a unique user experience compared to commercially available sys-
tems.

Whilst not necessary for usage in a offline pipeline, implementing
a physically plausible hair shading model based on the techniques
described in [Marschner et al. 2003], would greatly improve the
visual accuracy of my viewport renderings.
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Listing 1: Extract from the Distributor compute shader, showing
how the Mesh and Curves buffers are accessed.

struct Face
{

vec4 position[3];
vec4 normal[3];
vec4 uv[3];{}

};

layout (std430, binding = 0) buffer facesBuffer
{

Face faces[];
};

struct Curve
{

vec4 position[5];
};

layout (std430, binding = 1) buffer curvesBuffer
{

Curve curves[];
};

Listing 2: Extract from the C++ application code show-
ing how Curves are rendered procedurally. emptyVAO
is an empty Vertex Array Object, curvesSSBO is a
GL SHADER STORAGE BUFFER containing vertex data for
multiple curves, and indices is the number of curves in the
buffer.

glBindVertexArray(emptyVAO);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, ←↩

curvesSSBO);
glDrawArrays(GL_POINTS, 0, indices);

Listing 3: Extract from the curves rendering geometry shader,
showing how vertex positions were processed from data stored in
a bound GL SHADER STORAGE BUFFER.

#version 430 core
layout(points) in;
layout(line_strip, max_vertices = 5) out;

struct Curve
{

vec4 position[5];
};

layout (std430, binding = 0) buffer curvesBuffer
{

Curve curves[];
};

uniform mat4 MVP;

void main()
{

for (int i = 0; i < 5; ++i)
{

gl_Position = MVP * vec4(curves[←↩
gl_PrimitiveIDIn].position[i].xyz, ←↩
1.0);

EmitVertex();
}
EndPrimitive();

}
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