
Simulation Techniques for Animation: GPU Accelerated Mass Spring System

Joe Withers∗

Abstract

During this project I explored the feasibility of offloading compu-
tation onto the GPU, in soft body Mass-spring system simulations,
focusing primarily on techniques that make use of OpenGL com-
pute shaders. This report documents my implementation of such
techniques, as well as my findings.

1 Implementation

1.1 Introduction

Mass spring Systems are a method of approximating deformation
by discretizing the the geometry into a series of masses, that are
connected by deformable springs. Masses in these systems are
commonly arranged in a Cartesian axis aligned grid, as shown in
Figure 1. Varying the dimensions of the grid allows the system to
approximate different objects, such as hair strands (1 dimensional),
sections of cloth (2 dimensional), or soft body ’jello’ cubes (3 di-
mensional).

Aside from hair and cloth simulations, mass-spring systems are
also used for medical purposes, such as in surgical simulations
[Mosegaard et al. 2005]. For my implementation I have focused
on the 3 dimensional case, a ’jello’ cube.

1.2 Resources

I used C++ and OpenGL to develop my implementation, utilising
the NCCA Graphics Library NGL [Macey 2014] to interact with
OpenGL, and Qt5 to create the user interface. I based my im-
plementation around a demo of a Mass-spring System using RK4
(Runge-Kutta 4th Order) integration [Macey 2015], that uses NGL
and Qt5 for it’s user interface. I was able to use many aspects this
implementation as ’boilerplate code’, such as the camera movement
and passing of basic geometry to OpenGL, which saved me a lot of
time and allowed me to focus on developing the simulation itself.
This implementation also provided an example of RK4 integration
and calculations of spring forces according to Hooke’s law, though
these needed to be altered to make them suitable for use with GPU
computation.

1.3 Data Structures

Before starting to implement the system on the GPU, I first had to
establish what the data structures for the mass-spring system would
be, and to do this I looked at tutorial material covering game physics
systems [Fiedler 2004a] hosted by Gaffer On Games. This provided
me with an understanding of the necessary data I would need to
store for each mass object in the system. I determined that each
mass object would be a struct of two vectors:

• Vec3 Position - This stores the position of the mass in world
space coordinates.

• Vec3 Velocity - This stores the combined speed and direction
at which the mass is travelling.

To determine the data required to represent the springs I looked
at tutorial material covering implementations of spring physics in

∗e-mail:joewithers96gmail.com

game engines [Fiedler 2004b], hosted by Gaffer On Games. This
article explains that the calculation of damped spring forces, ac-
cording to Hooke’s law, can be calculated by following:

F = −k(|x| − d)(x/|x|)− bv (1)

where:

F = The force to apply to each of the mass points.
k = The spring constant.
|x| = The distance between the two mass points.
d = The resting length of the spring.
b = The damping coefficient for the spring.
v = The relative velocity between the spring points.
I then determined that the data for the spring object could be repre-
sented with the following struct:

• unsigned int Start Index - This stores an integer that repre-
sents one of the connected masses, as an index into the array
of masses.

• unsigned int End Index - This stores an integer that repre-
sents the other connected mass, as an index into the array of
masses.

• float Resting Length - This stores the original resting length
of the spring.

• Vec3 Relative Velocity - This stores the combined speed and
direction at which the masses are travelling to or from each
other.

1.4 GPU Computation

For my first attempt at GPU implementation I decided to store each
the attributes for each mass struct and each spring struct in OpenGL
textures, similar to the technique used in [Georgii and Westermann
2005], but to use Image Load/Store commands for accessing and
manipulating data. The following attributes would need to be stored
as 1D textures:

• Mass positions - Vec3, RGBA32F, Size = Number of Masses.

• Spring velocity - Vec3, RGBA32F, Size = Number of
Springs.

• Spring resting length - float, R32F, Size = Number of
Springs.

• Spring start index - unsigned int, R16UI, Size = Number
of Springs.

• Spring end index - unsigned int, R16UI, Size = Number
of Springs.

To initialise these textures, I first dispatch a compute shader with
work-groups equal to the dimensions of my jello’ cube object. This
sets the initial position for the masses in the mass positions texture,
whilst also counting how many springs need to be created using
an atomic counter. The masses are arranged in a Cartesian axis
aligned grid, with three different types of springs connecting them:
structural, shear, and bending. Figure 1 provides a diagram of the
connectivity between springs and their masses.

I then read the contents of atomic counter and create the textures
necessary for spring attributes, whose length is equal to the number

(a) Structural Springs (b) Shear Springs (c) Bending Springs

Figure 1: Diagrams showing the connectivity of each type of spring
and their masses. [Emms 2012]

of springs counted by the atomic counter. The atomic counter is
then reset, and the compute shader is then dispatched for a second
time, however this time it calls a subroutine which stores the spring
attributes into each corresponding texture.

Whilst this approach works, it relies on maintaining six textures at
once, which is quite unwieldy. I also found that once the number
of masses is increased past 1000, the number of springs needed to
be stored exceeds the number of texels I can specify with glTex-
Image1D, at least on my system. I therefore decided to switch to
using Shader Storage Buffer Objects, as their size is only limited
by the amount of memory on the GPU, and they are much easier to
maintain and manipulate compared to textures.

Shader Storage Buffer Objects allow the passing of structs to di-
rectly shaders, so I was able to reduce my system to using just two
Shader Storage Buffer Objects; One stores an array of Mass structs,
the other stores an array of Spring structs. Upon changing the sys-
tem to use Shader Storage Buffer Objects, I found them to be much
faster, allowing up to 1.5 million springs to be calculated at once
with interactive frame rates.

Spring calculations are then performed by dispatching a compute
shader two times. The first dispatch performs RK4 integration to
calculate the updated relative velocity for the each of the springs.
The second dispatch makes use of the NV shader atomic float ex-
tension to allow atomic operations to be used with 32 bit floats,
which is used to accumulate the calculated velocity onto each of
the positions of each of the mass points, in parallel.

1.5 Physics Calculations

I then attempted to implement gravity and collisions with the
ground plane, by adding an additional ’external forces’ compute
shader pass which operates on each mass, after the spring compu-
tation pass. This compute shader accumulates velocity towards the
ground plane, and performs basic collision detection by clamping
the mass position Y coordinate to 0, and reflecting the velocity Y
value should the mass position be below the ground plane. I found
this to be unsuccessfull as the spring forces were not able to coun-
teract the velocity accumulated by ’gravity’, resulting in the system
being unable to achieve a resting position on the plane. I then at-
tempted to accumulate the mass velocity in the spring calculation
pass, however this resulted in the masses oscillating uncontrollably.

In reading the notes from a Pixar presentation about GPU compute
[Emms 2012], I found a solution; extend the mass struct to store a
’Force’ value, which the output of the spring calculation pass can

then be accumulated on. The ’external forces’ compute shader pass
can then accumulate gravity onto this value, and use it to calculate
the updated mass velocity. The ’Force’ value is then cleared before
starting the spring computation pass again for the next time step.
This was also beneficial as it allowed me to apply ’Forces’ directly
upon detecting collision. Slight instability was still present, but I
was able to mitigate it by introducing pseudo air resistance, which
simply multiplies the velocity by a fixed value (0.99 for example).

I then implemented additional physics interactions, such as colli-
sion with a sphere, friction, and a constant for restitution or ’recov-
ery’. Collisions with the sphere are handled in the ’external forces’,
and uses signed distance to determine whether a mass is inside the
sphere. If it determines the mass is within the sphere, it projects
the position of the mass onto the surface of the sphere, and applies
force to the mass in the direction of the normal on that point on
the surface. Friction is applied by multiplying the mass velocity
by a fixed constant if collision is detected. Restitution is imple-
mented by updating the spring’s resting length with a value that is
linearly interpolated between the resting length and the current dis-
tance between the masses. In reading an article explaining the use
of restitution coefficients in mass-spring systems [Kagan 2010], I
realised that this method does not account for the transfer of kinetic
energy, so will likely result in inaccurate behaviour.

One of the features I had planned initially was the ability to choose
between RK4, RK2, and Euler integration. As I had already imple-
mented RK4, it was relatively simple to implement RK2 and Euler
methods, though I referred to example implementations [Boesch
2010] to ensure my calculations were correct.

2 Research Report

2.1 Materials

Whilst performant, I didn’t find the techniques described in Mass-
Spring Systems on the GPU [Georgii and Westermann 2005] to be
ideal for my implementation as it requires maintaining multiple tex-
tures for each of the attributes in the mass-spring system. Fortu-
nately, Shader Storage Buffer Objects have been implemented in
OpenGL since the paper was written, allowing me to pass data al-
most arbitrarily between compute shader stages. Another advantage
of using Shader Storage Buffer Objects is that they can be sized up
to the limit of GPU memory, written to atomically, allowing par-
allel manipulation of data, and structs can be passed from the host
program to the GPU with relative ease.

This allowed me to use a technique similar to the one described in
[Emms 2012], which makes use of CUDA to perform mass-spring
simulations with RK4 integration, by sending the required data to
the GPU via structs. Aside from using OpenGL compute shaders
rather than CUDA, my implementation is notably different from the
one described here, as my integration step only evaluates the forces
exerted by the springs. The data structures used in [Emms 2012]
store additional velocity values, one for each evaluation in the RK4
integration, allowing both spring forces and external forces to be
accounted for in the integration. This results in improved collision
detection behaviour when compared to my implementation, how-
ever the issue is somewhat mitigated by the fact that I do not simu-
late self collisions within the mass-spring system, nor do I simulate
collisions between multiple mass-spring systems.

2.2 Results

Overall I was quite impressed by the performance I was able to gain
by offloading the physics calculations for my system onto the GPU.

I am able to maintain interactive frame rates with all of the afore-
mentioned physics calculations being performed 10 times a frame,
on an object with 1000 masses and 9960 springs. GPU memory
usage is also remarkably low at just 70MiB.

Whilst my implementation may not be physically accurate, the per-
formance results are comparable to other GPU Mass Spring System
implementations, such as those described in [Georgii and Wester-
mann 2005] and [Emms 2012]. Figure 2 shows screen captures of
my implementation.

Figure 2: Screenshots of my implementation showing collision
with a moving sphere, and the resulting deformation.

Towards the end of the assignment I was able to implement a simple
physically based shading model, and screen-space ambient occlu-
sion. Whilst these may seem like novelty features, they greatly im-
prove the usability of the system as it becomes much easier to ’read’
the spatial properties of the scene, and indicates areas of geometry
that are colliding or nearing collision.

2.3 Improvements

Whilst I am pleased with the performance of my implementation,
there are however a number of problems within my physics calcu-
lations that reduce the overall quality of my simulation.

One thing I have noticed is that, although I have implemented the
option to switch between different integration schemes, the differ-
ence between them is negligible. I suspect this is because I am
using very small time step, and have also implemented ’sub steps’,
which performs the physics calculations multiple times per frame
at even smaller time step values. An article [Boesch 2010] I looked
at whilst researching integrators notes that the error present in Euler
integration can be reduced by running the integration multiple times
at smaller time steps, which would seem to confirm this. I could
also consider implementing Verlet integration, as used in [Georgii
and Westermann 2005], however this would require storing addi-
tional variables for the previous mass positions and velocities.

In my final implementation there are sometimes errors in which
the collision detection doesn’t evaluate correctly, and the sphere is
able to pass through the object. I believe this is due to the fact that

numerical integration is only performed in the spring calculation
pass, and not in the external forces pass. Therefore it only evaluates
the forces from the springs within the integrator, and not the forces
applied by gravity or collisions. Fixing this would require heavy
restructuring of my implementation, though it would be necessary
for a more accurate implementation.

As mentioned in Section 1.5, the calculation used for simulating
restitution is not physically plausible, as it does not account for the
transfer of kinetic energy into the spring. This results in gradual
’squashing’ of the system under gravitational force if the recovery
value is set to anything less than 1.0. Should I implement the resti-
tution calculations described in [Kagan 2010], I could also imple-
ment the effects of spring breakage, which could be calculated as a
limit for the amount of kinetic energy a spring can receive before
no longer exerting force.

Another flaw in my system is that it does not account for self col-
lisions. Whilst the downsides of this are somewhat mitigated in
the three dimensional ’jello’ cube example, it severely impacts the
quality of the simulation for the two dimensional ’cloth’ example.
Detecting self collisions would be relatively simple as I already
have point-to-sphere collisions implemented in my system. How-
ever, implementing the collision response would be much harder
and would require a restructuring of the integration calculations,
similar to that of [Emms 2012]. The time complexity for calculating
collisions between every mass in the system and every other mass,
could also incur a significant computation overhead, as it would
have a time complexity of O(n2).

References

BOESCH, F., 2010. Integration by example -
euler vs verlet vs runge-kutta. http://
codeflow.org/entries/2010/aug/28/
integration-by-example-euler-vs-verlet-vs-runge-kutta/.
Accessed 18 Jan 2018.

EMMS, L. 2012. Gpgpu in film production - mass-spring gpu demo.
Presented by Pixar Animation Studios at SIGGRAPH Asia 2012.
Accessed 14 Jan 2017.

FIEDLER, G., 2004. Physics in 3d. https://
gafferongames.com/post/physics_in_3d/. Ac-
cessed 15 Dec 2017.

FIEDLER, G., 2004. Spring physics. https:
//gafferongames.com/post/spring_physics/.
Accessed 5 Jan 2018.

GEORGII, J., AND WESTERMANN, R. 2005. Mass-spring systems
on the gpu. Accessed 17 Nov 2017.

KAGAN, D. D. 2010. Understanding the coefficient of restitution
(cor) using mass/spring systems. Accessed 17 Jan 2018.

MACEY, J., 2014. Ngl the ncca graphics library. https://
github.com/NCCA/NGL.

MACEY, J., 2015. Mass spring system using rk 4 integration.
https://github.com/NCCA/MassSpring. Accessed 9
Nov 2017.

MOSEGAARD, J., HERBORG, P., AND SRENSEN, T. S. 2005.
A gpu accelerated spring mass system for surgical simulation.
Accessed 17 Jan 2018.

http://codeflow.org/entries/2010/aug/28/integration-by-example-euler-vs-verlet-vs-runge-kutta/
http://codeflow.org/entries/2010/aug/28/integration-by-example-euler-vs-verlet-vs-runge-kutta/
http://codeflow.org/entries/2010/aug/28/integration-by-example-euler-vs-verlet-vs-runge-kutta/
https://gafferongames.com/post/physics_in_3d/
https://gafferongames.com/post/physics_in_3d/
https://gafferongames.com/post/spring_physics/
https://gafferongames.com/post/spring_physics/
https://github.com/NCCA/NGL
https://github.com/NCCA/NGL
https://github.com/NCCA/MassSpring

