
Masterclass Assignment: Real-time Global Illumination

Joe Withers∗

Abstract

This document details the approach I took to complete the Master-
class assignment, evaluates the results, and lists possible improve-
ments I could make in the future.

1 Introduction

For this assignment I decided to implement the technique Interac-
tive Indirect Illumination using voxel cone tracing [Crassin et al.
2011], commonly referred to as VXGI, to achieve realtime global
illumination. This technique achieves real-time global illumina-
tion rendering the directly illuminated scene geometry into a three-
dimensional texture, which can be sampled in a deferred shading
pass using cone tracing to calculate accurate indirect diffuse and
specular lighting terms.

2 Method

I used C++ and OpenGL for this assignment, utilising the NCCA
Graphics Library NGL [Macey 2014] to interact with OpenGL, and
Qt5 to create the user interface. I based my implementation around
a demo of the Sponza atrium using NGL [Macey 2017], that al-
though is quite old, saved me from spending a lot of time writing
a grouped Wavefront OBJ and MTL file parser. I extended upon
this demo by converting it to use deferred shading, which is neces-
sary for VXGI and other post process effects, using tutorial material
from LearnOpenGL [Vries 2016a].

The first step of implementing VXGI was to create a voxelized
representation of the albedo and surface normal information in the
scene. The method used in the source material [Crassin et al. 2011]
is explained in great detail in an OpenGL Insights chapter titled
Octree-Based Sparse Voxelization Using the GPU Hardware Ras-
terizer [Crassin and Green 2012], but the basic concept is as fol-
lowed:

1. Generate three projection matrices for orthogonal projections,
covering the scene geometry equally, and aligned to each of
the coordinate axes.

2. Draw the scene with depth testing disabled, ensuring frag-
ments are generated for every triangle.

3. For each triangle, determine which of the coordinate axes
is most aligned with the surface normal, thus generating the
maximum number of fragments when transformed using the
corresponding projection matrix for that axis.

4. Using either the NVIDIA OpenGL extension GL CONSER-
VATIVE RASTERIZATION NV, or a geometry shader, enlarge
each triangle so that fragments are generated regardless of
whether it covers a pixels center. This helps to reduce ’cracks’
in the voxelization on surfaces that are angled away from the
coordinate axes.

5. Using the fragment coordinates, depth, and the axis chosen in
step 3, infer the texel coordinate that the fragment corresponds
to in the target 3D textures. Store the fragment albedo and
normal information in 3D textures using a moving average.

∗e-mail: joewithers96@gmail.com

Whilst this technique is somewhat easy to explain, I had not previ-
ously used the required Image Load/Store commands so I referred
to an implementation I found on GitHub [Lin 2013] to guide me on
the OpenGL side of things.

The next step was to inject the scene’s emissive values into a 3D
texture. This is achieved by raytracing towards the light, for each of
the non-transparent texels in the voxelized textures. This is where
my implementation differs from the source material [Crassin et al.
2011] as I opted to use a dense 3D texture as opposed to a sparse
voxel octree. Whilst this was significantly easier to set up, it also
severely impacts the speed at which raytracing can be performed
through this 3D texture (See Figure 2 for performance metrics). The
source material [Crassin et al. 2011] also details a method for mip-
mapping this texture anisotropically along each of the coordinate
axes, however I opted to use OpenGL’s genMipMaps method to
save time.

The final step was to implement cone tracing in the deferred shading
pass. This pass calculates the indirect light contribution, specular
lobe contribution, and also soft shadows, using the emissive 3D
texture and the textures generated by the G-Buffer.

Figure 1: A series of diagrams showing how the combination of
a specular cone and multiple diffuse cones can be used to approx-
imate a material BRDF. [Villegas 2016] The diffuse cones form a
normal-oriented hemisphere to approximate the diffuse reflections,
whilst the specular cone follows the reflection vector and it’s aper-
ture varies dependent on the material roughness.

For the indirect and specular light contributions I referred to VC-
TRenderer [Villegas 2016] for example code on implementing an
efficient cone tracing function, and how it can be used to approx-
imate a BRDF as shown in Figure 1. I then adapted the specular
component to work with the PBR materials to ensure the specular
cone aperture is physically plausible for any given viewing angle.

To calculate the the direct lighting contribution I referred to tuto-
rial material from LearnOpenGL [Vries 2016b] to ensure that the
PBR textures passed through the G-Buffer are combined in a phys-
ically plausible way. I referred again to VCTRenderer [Villegas
2016] to implement soft shadows into the direct lighting compo-
nent, which involves calculating a fragment’s occlusion by tracing
a cone back towards the light source and accumulating the opacity
values at each step.

Finally I added additional controls to the interface and passed them
as uniforms to the deferred shading pass, allowing the user to con-
trol the following parameters:

• The overall contributions of each lighting component.



• Whether to enable or disable the calculation of each lighting
component, as shown in Figures 4, 5, 6.

• The cone aperture for tracing the soft shadows. Larger values
can be used to estimate larger light sources.

• The light falloff exponent k relative to the distance to the
light. Light falloff is calculated as 1/(distancek), so the de-
fault value of 2.0 is physically plausible.

• A multiplier for the specular cone aperture. Smaller values
can make the scene highly reflective as shown in Figure 7.

3 Results

Figure 3 shows a series of screenshots of my final results with all of
the lighting passes enabled. Whilst I am pleased with the outcome,
there are also a number of visual artefacts that I discuss in Section 4.
Figure 2 shows some performance metrics for the individual light-
ing passes at different voxel resolutions. Note that memory usage is
high, even at low resolutions, as I opted to use dense 3D textures as
opposed to sparse 3D textures. The time taken to perform the light
injection pass also scales quite poorly at high resolutions because of
this. Despite this, moving around the scene maintains a smooth 60
frames per second (limited by the OpenGL context), providing the
user does not move the light. The voxelization and shading passes
seem to scale very well with increased resolution, taking on average
2 and 4.5 milliseconds respectively at all of the tested resolutions.

Voxel Resolution 2563 5123 7683

Frames per second 60 60 60
Memory usage 1063MiB 2615MiB 6628MiB
Voxelization 2ms 2ms 2ms

Light Injection 65ms 378.5ms 12294.5ms
Shading 4.5ms 4.5ms 4.5ms

Figure 2: Averaged performance results when running with a
NVIDIA GTX 1080 8GB at 2560x1080.

4 Future Improvements

Unfortunately I wasn’t able to implement a sparse data structure as
described in the source material [Crassin et al. 2011] before the as-
signment deadline. Having a sparse data structure to store the emis-
sive voxel texture would save a significant amount of GPU memory
consumption, allowing the resolution for voxelization to be much
higher; currently with dense 3D textures it is capable of exceeding
both the 2 gigabyte memory limit of my GPU, and the 8 gigabyte
limit of those at university.

The speed at which lighting rays are marched during the light injec-
tion pass would also be improved, as it would be able to step further
through the voxel texture whilst ray marching if the higher levels in
the octree are known to be empty.

I did start working on a sparse voxel octree as described in OpenGL
Insights [Crassin and Green 2012] by using an OpenGL Atomic
Counter for calculating the number of fragments needed for the
voxel fragment list, and I believe I understand the technique well
enough should I wish to implement it in the future.

The source material [Crassin et al. 2011] also describes a method
for anisotropic mip-mapping of the 3D texture, storing a version of
the texture for each directional axis, which improves visual accu-
racy when cone tracing. Whilst I could have implemented this with
the dense 3D textures I was using, I opted to use OpenGL’s built in
mip-mapping to save time.

Figure 3: Three screenshots showing the full scene with a voxel
resolution of 5123.

Figure 4: A screenshot showing just the direct lighting component.

Figure 5: A screenshot showing just the indirect lighting compo-
nent.



Figure 6: A screenshot showing just the specular component.

Figure 7: A screenshot showing just the specular component, but
with the minimum cone aperture.

There are also a number of visual artefacts, the most noticeable of
which being the cracks in the voxelization as seen in Figure 8. I un-
derstand this to be due to incorrect conservative rasterization, how-
ever I have the NVIDIA GL CONSERVATIVE RASTERIZATION
NV extension enabled and have confirmed it to be working, so I
believe it could be an issue with using the extension whilst hav-
ing multisampling enabled (as it is currently). I found that using
a geometry shader to achieve the same result led to quite unusable
artefacting.

Another artefact is quite visible noise in the indirect lighting com-
ponent, as seen in Figure 9. I am not sure what causes this, though
I suspect it could be because the hemisphere of indirect cones are
aligned with the normal-mapped surface normal as opposed to the
surface normal recieved from the geometry, which results in ex-
cessive variance between indirect lighting calculations for neigh-
bouring fragments. Banding artefacts are visible in the specular
component, as seen in Figure 10, which occurs at certain viewing
angles and at certain values for the specular aperture multiplier. I
suspect this is a combination of excessive variance in surface nor-
mals, as mentioned previously, but could also be a result of limited
numerical precision in calculating the specular component.

References

CRASSIN, C., AND GREEN, S. 2012. Octree-based sparse vox-
elization using the gpu hardware rasterizer. OpenGL Insights,
303. Accessed 20 Nov 2017.

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISE-
MANN, E. 2011. Interactive indirect illumination using voxel
cone tracing. Symposium on Interactive 3D Graphics and Games
on - I3D 11.

LIN, C.-T., 2013. Sparse voxel octree. https://github.
com/otaku690/SparseVoxelOctree. Accessed 17 Nov
2017.

Figure 8: A screenshot showing voxelization artefacts.

Figure 9: A screenshot showing noise in the indirect lighting.

Figure 10: A screenshot showing banding artefacts in the specular
component.

https://github.com/otaku690/SparseVoxelOctree
https://github.com/otaku690/SparseVoxelOctree


MACEY, J., 2014. Ngl the ncca graphics library. https://
github.com/NCCA/NGL.

MACEY, J., 2017. Glsl physically based rendering -
sponza demo. https://github.com/NCCA/PBR/tree/
master/PBRSponza. Accessed 24 Oct 2017.

VILLEGAS, J., 2016. Vctrenderer. https://github.com/
jose-villegas/VCTRenderer. Accessed 30 Nov 2017.

VRIES, J. D., 2016. Deferred shading. https:
//learnopengl.com/#!Advanced-Lighting/
Deferred-Shading. Accessed 25 Oct 2017.

VRIES, J. D., 2016. Pbr lighting. https://learnopengl.
com/#!PBR/Lighting. Accessed 11 Oct 2017.

https://github.com/NCCA/NGL
https://github.com/NCCA/NGL
https://github.com/NCCA/PBR/tree/master/PBRSponza
https://github.com/NCCA/PBR/tree/master/PBRSponza
https://github.com/jose-villegas/VCTRenderer
https://github.com/jose-villegas/VCTRenderer
https://learnopengl.com/#!Advanced-Lighting/Deferred-Shading
https://learnopengl.com/#!Advanced-Lighting/Deferred-Shading
https://learnopengl.com/#!Advanced-Lighting/Deferred-Shading
https://learnopengl.com/#!PBR/Lighting
https://learnopengl.com/#!PBR/Lighting

